November 2020

University of Bologna (UNIBO) scientists identified best surface treatment for Magnesium.

After years of comparative studies UNIBO researchers headed by Prof Carla Martini identified that Electrochemical Surface Oxidation (ECO) treatment of Cambridge Nanolitic ( provides most compact oxide ceramic layer with wear resistance an order of magnitude higher than next best PEO surface layer (block-on-ring dry sliding tests against 100Cr6 bearing steel).

Friction Coefficient of the ECO surface was about 40% lower.

Remarkably, no decrease of fatigue strength was observed for ECO treated samples by comparison to the untreated alloy with the same surface roughness (4-point rotating bending fatigue, ISO1147).

Detailed results of the study to be published in 2021.

March 2020

Quantum leap in textile machinery

Modern textile machinery is facing an ever-growing need for (1) increase of productivity and (2) dealing with new highly abrasive materials like synthetic fibres.

Increase of manufacturing speed requires use of much lighter materials such as Aluminium or even Magnesium instead of heavy steel and ceramic for moving parts of textile machinery. Light metal parts have lower inertia and enable to move components much faster, increasing productivity and reducing energy consumption. Use of light metals is limited by their low wear resistance, particularly in case of abrasive yearn, such as denim or synthetic fibres.  Modern surface treatments for light metals used for textile components such as plasma sprayed ceramic, hard anodising, chrome and nickel coatings are known for decades and reached their performance limits.

A quantum leap in providing light metal components with record high wear resistance was secured by introduction of novel ECO-ceramic coating which was immediately appreciated by a number of leading European manufacturers. Within a short time, ECO-ceramic became a coating of choice for a range of critical components in textile machinery such as shuttles, grippers, rollers, fingers, disks, etc.

Fine nanoceramic coating surface appeared to be yarn friendly and exceptionally wear resistant, well above traditional surface treatments. Environmentally safe innovative electrolytic process enables to apply dense, highly adherent ceramic layer on components of practically any shape.  Cambridge Nanolitic ( the developer and supplier of ECO-ceramic coating is providing textile manufacturers with unique possibilities to design highly productive versatile machinery and light durable components.

October  2019

ECO-ceramic surfacing superior to Hard Anodising and PEO

Comparison of tribological properties of ECO-ceramic coating applied by Electro Chemical Oxidation (ECO) vs Hard Anodizing (HA) and Plasma Electrolytic Oxidation (PEO) was presented by Prof Carla Martini (, University  of Bologna at ECHT 2019 Surface Engineering Conference  (

ECO-ceramic coating produced by Cambridge Nanolitic Limited ( on Aluminium Alloy 6082 demonstrated at least 50% higher scratch and wear resistance in progressive load scratch test and dry sliding wear test.














April 2019

Wear resistant coating for special alloys.

Aluminium-Lithium Alloy 2099 is a material of choice for motorsport and aerospace industries due to its unique combination of strength and lightness. Surface treatment of this alloy such as anodising or PEO is complex due to presence of Cu, Li and Zn in it.

Cambridge Nanolitic scientists developed an innovative electro-chemical oxidation (ECO) treatment for Al-Li 2099.

ECO process enabled to build  5 - 60 micron thick oxide ceramic layers on that alloy to provide it best in class wear and corrosion resistance.

October 2018

Tribological properties of nanoceramic coating compared to conventional hard anodizing and plasma electrolytic oxidation (PEO).

This study is focused on comparison of the microstructural features and dry sliding behaviour of the oxide layers grown on the same aluminium alloys under different surface treatment conditions, comparing nanoceramic coating with conventional anti-wear surface treatments such as hard anodizing with PEO.

In collaboration with University of Bologna  Dept. of Civil, Chemical, Environmental and Materials Engineering  (DICAM) and  Department of Industrial Engineering (DIN), Alma Mater Studiorum, Bologna, Italy.

February 2017

Durable Plasma Reactor Electrodes with Nanoceramic Coating.

In collaboration with University of Sheffield. Supported by Innovate UK.

Plasma processing is widespread for synthesis of high performance materials. For most common types of plasma reactors the electrodes must be robust and also of high tolerance of the uniformity of thickness of ceramic coating, particularly for multiplexed microreactors. The project explores the application of coating developed by Cambridge Nanolitic to achieve the necessary level of tolerance and durability, and will test the plasma reactor fidelity and performance on an exemplar application to produce ozone-rich microbubbles for “green” laundry cleaning and water sterilisation.

Electrodes of plasma reactor with Nanoceramic coating in operation
June 2016

Multifunctional nanoceramic surfacing for Titanium implants.

In collaboration with University of Manchester. Supported by Innovate UK.

Project explores the technical feasibility of a novel nanoceramic surfacing for titanium implants developed by Cambridge Nanolitic to enhance their biocompatibility and osseointegration.

Cambridge Nanolitic provides Ti implants with nanoceramic surface to effectively combine the best features of metal implants such as high mechanical strength and formability with high biocompatibility, corrosion resistance and aesthetics of ceramics.

Titanium Dental implants with different finishes:  1. Etched Titanium surface; 2. TiUnite finish, Nobel Biocare; 3. Cambridge Nanolitic White.
November 2011

Cambridge Nanolitic spins off Cambridge Nanotherm Limited ( focused exclusively on electronic applications of nanoceramic coating.

Electronic substrates with nanoceramic dielectric insulation have a unique combination of high dielectric strength and thermal conductivity.

LED industry leaders expressed interest to Nanotherm TM substrates for solid state lighting application.

Investment for a spin off company was secured from a London based VC fund. Manufacturing plant for producing novel electronic substrates is built in Haverhill, Suffolk, UK

May 2010

Nanostructured surface with self-assembled Nanocomposites

Cambridge Nanolitic developed an original technology based on controlled processes of self-assembly and self-organization of colloidal nano-components during the formation of their complexes with polyfunctional ligands in a bulk liquid phase for functionalisation of nanoceramic surfaces.

TEM images of free floating nanofilm